Форум В шутку и всерьёз

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » Форум В шутку и всерьёз » Гранит науки » Большие числа


Большие числа

Сообщений 1 страница 4 из 4

1

Числа-гиганты

В этой статье я хочу поделиться с вами некоторыми впечатляющими фактами из окружающего нас мира. Мы рассмотрим по-настоящему большие и даже гигантские числа, с которыми можем столкнуться либо в реальности (порой сами того не замечая), либо в расчетах, говорящих кое-что важное о нашей Вселенной. Некоторые числа настолько поражают воображение, что даже для того чтобы только их представить, уже необходимо приложить немало умственных усилий. Статья будет построена следующим образом. Мы будем двигаться по пути возрастания степеней десятки, начав от миллиона и дальше, насколько у нас хватит знаний, терпения и сил. Давайте же отправимся в путь.
http://pulson.ru/wp-content/uploads/2015/07/110.jpg

Миллион = 1 000 000 = 10⁶

Наша первая остановка — «миллион» или 10 в 6-й степени. Это большое число, но все-таки оно не поражает воображение настолько, насколько это делают те числа, к которым мы перейдем вскоре. С миллионами чего-либо мы сталкиваемся довольно часто. До миллиона можно даже досчитать, и один весьма необычный человек по имени Джереми Харпер сделал это, транслируя свой трехмесячный счетный марафон в Интернет. Кстати, миллион секунд — это всего-навсего 11,5 дней. Миллиона рублей может не хватить для покупки хорошего автомобиля или скромной квартиры в Санкт-Петербурге. Стопка из миллиона книг, поставленных друг на друга, не выйдет даже за пределы атмосферы Земли. В свою очередь, из миллиона букв можно составить одну, достаточно большую, книгу (например, полная Библия состоит из более чем 2,5 миллионов букв). Миллион горошин поместится в большом мешке, который в принципе можно будет даже приподнять, если вы не боитесь надорваться. Миллион песчинок запросто поместится в пригоршне.
http://pulson.ru/wp-content/uploads/2015/07/19.jpg
А миллион бактерий будет едва различим невооруженному глазу. Человеческий волос, увеличенный в миллион раз, будет диаметром около 100 метров. Здание в миллион этажей (если бы такое можно было построить) поднялось бы в высоту на 2,5 тысячи километров, — в 4 с лишним раза выше, чем летает телескоп Хаббла и большинство искусственных спутников Земли.

Миллиард = 1 000 000 000 = 10⁹

Всё это достаточно любопытно, но особо не впечатляет. Впрочем, мы только начали свой путь. И наше следующее число — «миллиард» или 10 в 9-й степени. С миллиардами мы встречаемся гораздо реже. Если мы хотим увидеть миллиард чего-либо и при этом не быть раздавленными, то придется брать что-то очень, очень маленькое. Например, молекулы. Конечно, одна молекула невооруженным взглядом не видна (да и не во всякий микроскоп ее можно разглядеть). А вот миллиард молекул, поставленных «плечом к плечу», займут около 30 сантиметров (вообще, молекулы сильно различаются по своим размерам и для примера мы взяли молекулу воды, состоящую, как известно, из двух атомов водорода и одного атома кислорода). Сумму в миллиард долларов еще можно как-то представить. Это цена какого-нибудь суперсовременного боевого самолета или военного авианосца (да, война это очень дорогостоящее мероприятие). Стоимость Большого Адронного Коллайдера — около 10 миллиардов долларов. Головной мозг человека состоит из 100 миллиардов нейронов.
http://pulson.ru/wp-content/uploads/2015/07/29.jpg
И столько же, но только людей, жило на нашей планете за всю ее историю. Теперь давайте посмотрим наверх. Если разделить расстояние от Земли до Луны на миллиард, то получится примерно 40 сантиметров. А если на тот же миллиард разделить расстояние от Земли до Солнца, то получится уже 150 метров, а это большой такой небоскреб высотой почти в половину Эйфелевой башни. Сама Земля, уменьшенная в миллиард раз, станет размером с виноградину, — и, кстати, тогда она превратится в черную дыру. Космические аппараты «Вояджер», запущенные в 1977 году, пролетели почти по 20 миллиардов километров каждый. Космос по-настоящему огромен, и мы еще ощутим это в полной мере, когда перейдем к числам гораздо большим. А что насчет времени? Миллиард секунд — это 31,7 года, целое поколение. Если увеличить атом водорода в миллиард раз, то его диаметр составит целых 10 сантиметров, хотя его ядро даже при таком увеличении все равно не разглядишь. В этом масштабе мельчайшие вирусы будут гигантами размером в несколько десятков, а то и сотен метров. И даже молекула ДНК будет шириной в целых 3 метра.

Триллион = 1 000 000 000 000 = 10¹²

Наш третий гость — «триллион» или 10 в 12-й степени. И чтобы представить его наглядно, уже придется потрудиться. Например, что может стоить триллион долларов? По некоторым подсчетам, это цена экспедиции на Марс. А как вы думаете, сколько всего наличных денег на планете Земля? Около 4 триллионов долларов. Забавно, что государственный долг США почти в 5 раз больше. А если сложить вообще всё то, что можно купить сегодня за деньги, то это будет стоить почти 100 триллионов долларов.
http://pulson.ru/wp-content/uploads/2015/07/38.jpg
Общая масса воздуха, который вдыхают все люди на нашей планете за 1 год, составляет около 6 триллионов килограмм. В океанах нашей планеты обитает около триллиона рыб. Триллион секунд, как вы наверняка уже догадались, это в тысячу раз дольше, чем миллиард, — то есть 31 с лишним тысяча лет. Примерно столько времени назад вымерли неандертальцы. Но это секунды. А вот через триллион лет случится нечто гораздо более интересное — в галактиках прекратят образовываться новые звезды. Триллион километров — такое расстояние свет в вакууме проходит чуть больше чем за месяц. А 42 триллиона километров — это расстояние до ближайшей к нам звезды (Проксимы Центавра). Если мы возьмем триллион бактерий (допустим, у нас как-то получится их собрать всех вместе), то они займут объем одного кубика сахара. Примерно столько бактерий содержится в теле человека (их общий вес около 2 килограмм). А число клеток в нем — несколько десятков триллионов. Во всех когда-либо отпечатанных книгах за всю историю книгопечатания около 100 триллионов букв. Вообще, кажется, что триллион это очень много. Но попробуем взять что-нибудь по-настоящему маленькое, — например атом. Горстку из триллиона атомов даже не увидеть невооруженным взглядом, вот насколько они малы. Давайте лучше увеличим что-нибудь в триллион раз. Например, электрон. Он будет размером с горошину. А вот кварки, увеличенные в триллион раз, все еще не будут видны. Кстати, вы же понимаете, что взять триллион штук чего-либо это совсем не то же самое, что увеличить это что-то в триллион раз?

Квадриллион = 1 000 000 000 000 000 = 10¹⁵

Четвертое число — «квадриллион» или 10 в 15-й степени. Это название уже не на слуху и редко кто пользуется им в обыденной жизни. Например, квадриллион долларов — это сумма неиспользуемая в практическом смысле. Даже не понятно, что может стоить так много. Разве что небольшая гора высотой метров в 200, состоящая из цельного куска платины (если бы такая существовала и если бы мы умудрились продать ее на рынке по текущему курсу). На нашей планете живет примерно квадриллион муравьев (да, их гораздо больше, чем людей, — примерно в 100 тысяч раз).
http://pulson.ru/wp-content/uploads/2015/07/48.jpg
Если пролететь квадриллион километров (а это примерно 100 световых лет), то можно посетить несколько ближайших к Земле звезд и вернуться обратно. Через 200 квадриллионов секунд Солнце перейдет в стадию красного гиганта. Помните кварки из нашего предыдущего абзаца? Давайте увеличим их в квадриллион раз. Размер самых больших из них будет равен примерно 1 миллиметру, а самые маленькие (так называемые «истинные» кварки) все еще не будут видны. И нейтрино, кстати, тоже видны не будут, хотя об их размерах мы можем судить только весьма приблизительно. А еще самые мощные современные компьютеры выдают несколько десятков квадриллионов операций в секунду (петафлопсов).

Квинтиллион = 1 000 000 000 000 000 000 = 10¹⁸

Наш пятый гость — «квинтиллион» или 10 в 18-й степени. Он в тысячу раз больше квадриллиона. Квинтилион километров — это примерный диаметр нашей галактики, которая называется Млечный Путь. До нашей соседки — галактики Андромеды — 25 квинтиллионов (и, кстати, это расстояние сокращается на 300 километров каждую секунду, потому что мы сближаемся именно с такой скоростью). Квинтиллион секунд — это время в 2 раза большее, чем то, которое прошло от Большого Взрыва и до сегодняшнего момента. Для того чтобы вычерпать все мировые океаны, достаточно 5-6 квинтиллионов стаканов. А если мы возьмем квинтиллион молекул чернил, то сможем написать ими какое-нибудь одно, не очень большое, слово. 25-30 квинтиллионов молекул содержится в 1 куб.см воздуха при нормальной температуре и давлении (в основном, это молекулы азота – 78% и кислорода – 21%). Масса всей атмосферы Земли — около 5 квинтиллионов килограмм. Число возможных комбинаций кубика Рубика — 43 квинтиллиона с лишним. Для размещения квинтиллона бактерий нам потребуется достаточно большая бочка, впрочем всего одна. Компьютер с производительностью квинтиллион операций в секунду должен появиться через пару лет. И наконец, если мы хотим кинуть монету таким образом, чтобы она упала на ребро 5 раз подряд, то в среднем нам придется сделать для этого около 8 квинтиллионов попыток (хотя, конечно, это сильно зависит от того, что это за монета и как именно мы ее кидаем).
http://pulson.ru/wp-content/uploads/2015/07/56.jpg

Секстиллион = 1 000 000 000 000 000 000 000 = 10²¹

Двигаемся дальше. «Секстиллион» или 10 в 21-й степени. Столько атомов содержится в небольшом шарике из алюминия, диаметром в пару миллиметров.
http://pulson.ru/wp-content/uploads/2015/07/62.jpg
За один вдох мы захватываем около 10 секстиллионов молекул воздуха (причем среди них почти наверняка будут несколько молекул, которые были выдохнуты какой-нибудь выдающейся исторической личностью, например Элвисом Пресли). Вес гидросферы Земли – полтора секстиллиона килограмм, а Луны около 70 секстиллионов. Увеличив в секстиллион раз нейтрино, мы наконец-то сможем его разглядеть, хотя он будет совсем крошечным даже при таком фантастическом приближении. Количество песчинок на всех пляжах Земли — несколько секстиллионов, хотя это сильно зависит от того, как и что именно мы считаем. При этом, звезд во Вселенной даже еще больше (об этом чуть ниже). А размер видимой ее части — примерно 130 секстиллионов километров. Разумеется, такие расстояния никто в километрах не меряет, а использует для этого куда более подходящие световые годы и парсеки.

Септиллион = 1 000 000 000 000 000 000 000 000 = 10²⁴

Наш следующий на очереди гигант это «септиллион» или 10 в 24-й степени. Находить примеры из жизни становится всё труднее. 6 септиллионов килограмм весит наша Земля. Количество звезд в обозримой Вселенной — септиллион или совсем немного меньше.
http://pulson.ru/wp-content/uploads/2015/07/72.jpg
Знаменитое число Авогадро, обозначающее количество молекул в одном моле вещества, составляет почти септиллион (более точное значение: 6 на 10²³ степени). 10 септиллионов молекул воды поместится в одном стакане. А если выложить в ряд 50 септиллионов маковых зерен, то такая цепочка протянется до Туманности Андромеды.

Октиллион = 1 000 000 000 000 000 000 000 000 000 = 10²⁷

10 в 27-й степени это «октиллион». Октиллион горошин займут такой же объем как планета Земля. Еще это число интересно тем, что если взять 5-10 октиллионов атомов, то из них можно составить человеческое тело.
http://pulson.ru/wp-content/uploads/2015/07/81.jpg

Нониллион = 1 000 000 000 000 000 000 000 000 000 000 = 10³⁰

И, наконец, 10 в 30-й степени — это «нониллион». Приходится обращаться к примерам из чистой фантастики. Нониллион долларов стоили бы 5 планет размером с Землю, если бы они состояли из чистой платины. Для того, чтобы разглядеть невооруженным взглядом базовые составляющие материи (предполагается, что это одномерные квантовые струны), их придется увеличить в 100 нониллионов раз. Достаточно сказать, что толщина человеческого волоса при таком увеличении превысит размеры обозримой Вселенной. Масса Солнца — 2 нониллиона килограмм, а всей Солнечной системы лишь ненамного больше.
http://pulson.ru/wp-content/uploads/2015/07/91.jpg
Время жизни протона – минимум нониллион лет (а скорее всего, намного больше). В 1 килограмме вещества примерно 1 нониллион электронов. А из нониллиона молекул можно составить целого слона.

10 в 33-й степени называется дециллион, но дальше мы обойдемся уже без обозначений. Масса Галактики – 2 на 10⁴¹ килограмм. Число возможных комбинаций в колоде из 36 карт – 3.72 на 10⁴¹, а позиций в шахматах – 4.6 на 10⁴². Энергия взрыва сверхновой звезды – 10 в 42⁴² джоуля. Количество молекул воздуха на Земле – 10⁴⁴, а количество атомов, составляющих всю нашу планету, – 10⁵⁰. Масса всей Вселенной – 1.7 на 10⁵³ килограмм. Типичный белый карлик состоит из 10⁵⁷ частиц. Если поделить самое большое из реально существующих расстояний (радиус Вселенной) на самое малое (длину Планка), то получится 4.6 на 10⁶¹. 10⁶⁶ лет – время испарения черной дыры с массой Солнца. Число атомов в Галактике – 10⁶⁷, а во всей Вселенной – 10⁷⁷. При этом, элементарных частиц во Вселенной – 10⁸⁰, а число фотонов и того больше, – 10⁹⁰. Число 10¹⁰⁰ имеет красивое название «Гугол». Через Гугол лет испарятся последние черные дыры и наша Вселенная погрузится во тьму (наверное). Количество неповторяющихся шахматных партий (так называемое Число Шеннона) равно минимум 10¹¹⁸.
http://pulson.ru/wp-content/uploads/2015/07/10.jpg

Если набить всю обозримую Вселенную «под завязку» протонами, то их в нее поместится около 10¹²². А если взять для той же самой цели самый малый из известных науке объемов (планковский объем), то получится 10¹⁸⁵. Поистине ошеломляюще. Наверное, здесь заканчивается теоретическая физика и начинается чистая математика — царица всех наук.
Да, есть числа и гораздо большие, но они уже не имеют применения в реальном мире. Одним из самых больших чисел (а до недавнего времени — самым большим) из тех, которые использовались в доказательствах теорем, является число Грэма, введенное математиком Рональдом Грэмом. Оно настолько велико, что для его обозначения пришлось использовать совершенно новую нотацию, то есть систему записи чисел. Единственное, что можно сказать о числе Грэма, так это то, что каким бы вы его не представили, на самом деле оно гораздо, гораздо больше. Заканчивается оно на 387, а вот с какой цифры начинается, не знает никто и не узнает, судя по всему, никогда.
http://pulson.ru/wp-content/uploads/2015/07/111.jpg

Поскольку в данном тексте я обращался к очень большим числам, то наверняка допускал неточности, хотя и старался по возможности их не делать, проверяя то, что пишу, во внушающих доверие источниках. Конечно, если мы говорим, например, о квинтиллионе частиц, то ошибка в 10 раз будет почти незаметна (10¹⁸ и 10¹⁹ на глаз различаются не слишком сильно). Если же вы считаете, что где-то я допустил более грубую ошибку, то пожалуйста напишите об этом.

0

2

Число Грэма на пальцах™
эпиграф
Если долго всматриваться в бездну,
можно неплохо провести время.
Инженер Механических Душ

Как только ребенок (а это происходит где–то года в три–четыре) понимает, что все числа делятся на три группы "один, два и много", он тут же пытается выяснить: насколько много бывает много, чем много отличается от очень много, и может ли оказаться так много, что больше не бывает. Наверняка вы играли с родителями в интересную (для того возраста) игру, кто назовет самое большее число, и если предок был не глупее пятиклассника, то он всегда выигрывал, на каждый "миллион" отвечая "два миллиона", а на "миллиард" — "два миллиарда" или "миллиард плюс один".

Уже к первому классу школы каждый знает — чисел бесконечное множество, они никогда не заканчиваются и самого большого числа не бывает. К любому миллиону триллионов миллиардов всегда можно сказать "плюс один" и остаться в выигрыше. А чуточку позже приходит (должно прийти!) понимание, что длинные строки цифр сами по себе ничего не значат. Все эти триллионы миллиардов только тогда имеют смысл, когда служат представлением какого–то количества предметов или же описывают некое явление. Выдумать длиннющее число, которое ничего из себя не представляет, кроме набора долгозвучащих цифр, нет никакого труда, их итак бесконечное количество. Наука, в какой–то образной мере, занимается тем, что выискивает в этой необозримой бездне совершенно конкретные комбинации цифр, присовокупляя к некому физическому явлению, например скорости света, числу Авогадро или постоянной Планка.

http://ic.pics.livejournal.com/sly2m/9519071/396384/396384_original.jpg

И сразу же возникает вопрос, а какое на свете самое больше число, которое что–то означает? В этой статье я попытаюсь рассказать о цифровом монстре, называемом число Грэма, хотя строго говоря, науке известны числа и побольше. Число Грэма самое распиаренное, можно сказать "на слуху" у широкой публики, потому что оно довольно просто в объяснении и все же достаточно велико, чтобы вскружить голову. Вообще, тут необходимо объявить небольшой disclaimer (рус. предостережение). Пусть прозвучит как шутка, но я нифига не шучу. Говорю вполне серьезно — дотошное ковыряние в подобных математических глубинах в совокупности с безудержным расширением границ восприятия может оказать (и окажет) серьезное влияние на мироощущение, на позиционирование личности в обществе, и, в конечном итоге, на общее психологическое состояние ковыряющего, или, будем называть вещи своими именами — открывает дорогу к шизе. Не нужно чересчур внимательно вчитываться в нижеследующий текст, не стоит слишком ярко и живо представлять описываемые в нем вещи. И не говорите потом, что вас не предупреждали!

Пальцы:

Прежде чем переходить к числам–монстрам, потренируемся для начала на кошках. Напомню, что для описания больших чисел (не монстров, а просто больших чисел) удобно пользоваться научным или т.н. экспоненциальным способом записи.

Когда говорят, скажем, о количестве звезд во Вселенной (в Обозримой Вселенной), никакой идиот не лезет вычислять сколько их там в буквальном смысле с точностью до последней звезды. Считается, что примерно 1021 штук. И это оценка снизу. Значит общее количество звезд можно выразить числом, у которого после единицы стоит 21 ноль, т.е. "1 000 000 000 000 000 000 000".

Так выглядит небольшая часть из них (около 100 000) в шаровом скоплении Омега Центавра.

http://ic.pics.livejournal.com/sly2m/9519071/400148/400148_original.jpg

Естественно, когда речь идет о подобных масштабах, действительные цифры в числе существенного значения не играют, все ведь весьма условно и примерно. Может быть на самом деле число звезд во Вселенной "1 564 861 615 140 168 357 973", а может "9 384 684 643 798 468 483 745". А то и "3 333 333 333 333 333 333 333", почему нет, хотя маловероятно, конечно. В космологии, науке о свойствах Вселенной в целом, такими мелочами не морочатся. Главное представлять, что примерно это число состоит из 22 цифр, от чего удобней считать его единицей с 21 нулем, и записывать как 1021. Правило общее и весьма простое. Какая цифра или число стоят на месте степени (напечатаны мелким шрифтом сверху над 10вот тут), столько нолей после единицы будет в этом числе, если расписать его по–простецки, знаками подряд, а не по–научному. У некоторых чисел существуют "человеческие названия", например 103 мы называем "тысяча", 106 — "миллион", а 109 — "миллиард", а у некоторых нет. Скажем у 1059 нет общепринятого названия. А у 1021, кстати, есть — это "секстиллион".

Все, что идет до миллиона, практически любому человеку понятно интуитивно, ведь кто не хочет стать миллионером? Дальше у некоторых начинаются проблемы. Хотя миллиард (109) тоже знают почти все. До миллиарда даже можно досчитать. Если только родившись, буквально в момент появления на свет начать считать раз в секунду "один, два, три, четыре..." и не спать, не пить, не есть, а только считать–считать–считать без устали днем и ночью, то когда стукнет 32 года можно досчитать до миллиарда, потому что 32 оборота Земли вокруг Солнца занимают примерно миллиард секунд.

7 миллиардов — количество людей планете. Исходя из вышеизложенного, посчитать их всех по порядку в течении человеческой жизни совершенно невозможно, придется прожить больше двухсот лет.

100 миллиардов (1011) — столько или около того людей жило на планете за всю ее историю. 100 миллиардов гамбургеров продал Макдональдс к 1998му году за 50 лет своего существования. 100 миллиардов звезд (ну, чуть больше) находится в нашей галактике Млечный Путь, и Солнце — одна из них. Такое же количество галактик содержится в обозримой Вселенной. 100 миллиардов нейронов находится в головном мозге человека. И столько же анаэробных бактерий проживают у каждого читающего эти строки в слепой кишке.

Триллион (1012) — число, которым редко пользуются. До триллиона досчитать невозможно, на это уйдет 32 тысячи лет. Триллион секунд назад люди жили в пещерах и охотились с копьями на мамонтов. Да, триллион секунд назад на Земле жили мамонты. В океанах планеты примерно триллион рыб. В соседней с нами галактике Андромеды около триллиона звезд. Человек состоит из 10 триллионов клеток. ВВП России в 2013м году составил 66 триллионов рублей (в рублях 2013го года). От Земли до Сатурна 100 триллионов сантиметров и столько же букв в целом было отпечатано во всех когда–либо опубликованных книгах.

Квадриллион (1015, миллион миллиардов) — столько всего муравьев на планете. Это слово нормальные люди вслух не произносят, ну, признайтесь, когда вы последний раз в разговоре слышали "квадриллион чего–то"?

Квинтиллион (1018, миллиард миллиардов) — столько существует возможных конфигураций при сборке кубика Рубика 3х3х3. Так же количество кубометров воды в мировом океане.

Секстиллион (1021) — это число нам уже встречалось. Количество звезд в Обозримой Вселенной. Количество песчинок всех пустынь Земли. Количество транзисторов во всех существующих электронных устройствах человечества, если Intel нам не врал.

10 секстиллионов (1022) — количество молекул в грамме воды.

1024 — масса Земли в килограммах.

1026 — диаметр Обозримой Вселенной в метрах, но в метрах считать не очень удобно, общепринятые границы Обозримой Вселенной 93 миллиарда световых лет.

Размерами, большими чем Обозримая Вселенная, наука не оперирует. Мы знаем наверняка, что Обозримая Вселенная это не вся–вся–вся Вселенная. Это та часть, что мы, хотя бы теоретически, можем видеть и наблюдать. Или могли видеть в прошлом. Или сможем увидеть когда–нибудь в отдаленном будущем, оставаясь в рамках современной науки. От остальных частей Вселенной даже со скоростью света сигналы не смогут до нас добраться, от чего этих мест с нашей точки зрения как бы не существует. Насколько велика та большая Вселенная на самом деле никто не знает. Может быть в миллион раз больше, чем Обозримая. А может в миллиард. А может и вообще бесконечная. Говорю же, это уже не наука, а гадание на кофейной гуще. У ученых есть кое–какие догадки, но это больше фантазии, чем реальность.

Для визуализации космических масштабов полезно изучить эту картинку, раскрыв ее на весь экран.

http://ic.pics.livejournal.com/sly2m/9519071/396961/396961_original.jpg

Однако даже в Обозримую Вселенную можно напихать гораздо больше чего–то другого, чем метры.

1051 атомов составляют планету Земля.

1080 примерное количество элементарных частиц в Обозримой Вселенной.

1090 примерное количество фотонов в Обозримой Вселенной. Их почти в 10 миллиардов раз больше, чем элементарных частиц, электронов и протонов.

10100 — гугол. Это число ничего физически не значит, просто круглое и красивое. Компания, которая поставила себе целью индексировать гугол ссылок (шутка, конечно, это же больше, чем число элементарных частиц во Вселенной!) в 1998м году взяла себе название Google.

10122 протонов понадобится, чтобы набить Обозримую Вселенную под завязку, плотненько так, протончик к протончику, впритык.

10185 планковских объемов занимает Обозримая Вселенная. Меньших величин, чем планковский объем (кубик размеров планковской длины 10–35 метра) наша наука не знает. Наверняка, как и со Вселенной, там есть что–то еще более мелкое, но вменяемых формул для подобных мелочей ученые еще не придумали, одни сплошные спекуляции.

Получается, что 10185 или около того — наибольшее число, которое в принципе может что–то значить в современной науке. В науке, которая может пощупать и измерить. Это то, что существует или могло бы существовать, если так случилось, что мы узнали о Вселенной все, что можно было узнать. Число состоит из 186 цифр, вот оно:

100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

Наука здесь, конечно же, не заканчивается, но дальше уже идут вольные теории, догадки, а то и просто околонаучный чес и гон. Например, вы наверняка слышали про инфляционную теорию, согласно которой, возможно, наша Вселенная лишь часть более общей Мультивселенной, в которой этих вселенных как пузырей в океане шампанского.

http://ic.pics.livejournal.com/sly2m/9519071/397147/397147_original.jpg

Или слышали о теории струн, согласно которой может существовать около 10500 конфигураций колебаний струн, а значит такое же количество потенциальных вселенных, каждая со своими законами.

Чем дальше в лес, тем меньше теоретической физики и вообще науки остается в набирающих объемы числах, и за колонками нулей начинает проглядывать все более чистая, ничем не замутненная царица наук. Математика это ведь не физика, тут ограничений нет и стыдиться нечего, гуляй душа, пиши нули в формулах хоть до упаду.

Упомяну лишь известный многим гуголплекс. Число у которого гугол цифр, десять в степени гугол (10гугол), или десять в степени десять в степени сто (1010100).

1010 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

Не буду записывать его цифрами. Гуголплекс не значит абсолютно ничего. Человек не может представить себе гуголплекс чего бы то ни было, это физически невозможно. Чтобы записать такое число понадобится вся Обозримая Вселенная, если писать "нано–ручкой" прямо по вакууму фактически в планковские ячейки космоса. Переведем всю материю на чернила и заполним Вселенную одними сплошными цифрами, тогда получим гуголплекс. Но математики (страшные люди!) гуголпрексом только разминаются, это нижайшая планка, с которой для них стартуют настоящие ничтяки. И если вы думаете, что гуголплекс в степени гуголплекс это то, о чем пойдет речь, вы даже не представляете, НАСКОЛЬКО ошибаетесь.

За гуголплексом идут много интересных чисел, имеющих ту или иную роль в математических доказательствах, долго ли коротко, перейдем сразу к числу Грэма, названному так в честь (ну, естественно) математика Рональда Грэма. Сначала расскажу, что это такое и для чего нужно, после чего образно и на пальцах™ опишу, каково оно по величине, а затем уже напишу само число. Точнее попытаюсь объяснить, что же я написал.

Число Грэма появилось в работе, посвященной решению одной из задач в теории Рамсея, причем "рамсея" тут не деепричастие несовершенного вида, а фамилия другого математика, Франка Рамсея. Задача конечно же довольно надуманная с обывательской точки зрения, хоть и не сильно замороченная, даже легко понятная.

Представьте себе куб, все вершины которого соединены линиями–отрезками двух цветов, красного или синего. Соединены и раскрашены в случайном порядке. Кое–кто уже догадался, что речь пойдет о разделе математики под названием комбинаторика.

http://ic.pics.livejournal.com/sly2m/9519071/397356/397356_original.png

Сможем ли мы исхитриться и так подобрать конфигурацию цветов (а их всего два — красный и синий), чтобы при раскраске этих отрезков у нас НЕ ВЫШЛО, что все отрезки одного цвета, соединяющие четыре вершины, лежат в одной плоскости? В данном случае, НЕ представляют из себя такую фигуру:

http://ic.pics.livejournal.com/sly2m/9519071/397697/397697_original.png

Можете сами покумекать, покрутить куб в воображении перед глазами, сделать подобное не так уж и сложно. Цвета два, вершин (углов) у куба 8, значит отрезков их соединяющих — 28. Можно так подобрать конфигурацию раскраски, что мы нигде не получим вышеуказанной фигуры, во всех возможных плоскостях будут разноцветные линии.

А что, если у нас больше измерений? Что, если мы возьмем не куб, а четырехмерный куб, т.е. тессеракт? Сможем ли мы провернуть тот же фокус, что и с трехмерным?

http://ic.pics.livejournal.com/sly2m/9519071/397936/397936_original.png

Даже не стану объяснять, что такое четырехмерный куб, все знают? У четырехмерного куба 16 вершин. И не нужно пыжить мозг и пытаться представить четырехмерный куб. Это же чистая математика. Посмотрел на количество измерений, подставил в формулу, получил количество вершин, ребер, граней и так далее. Итак у четырехмерного куба 16 вершин и 120 отрезков их соединяющих. Количество комбинаций раскраски в четырехмерном случае гораздо больше, чем в трехмерном, но и тут не сильно сложно посчитать, разделить, сократить и тому подобное. Короче выяснить, что в четырехмерном пространстве тоже можно так исхитриться с раскраской отрезков у гиперкуба, что все линии одного цвета, соединяющие 4 вершины, не будут лежать в одной плоскости.

В пятимерном? И в пятимерном, там где куб называется пентерактом или пентакубом, тоже можно.
И в шестимерном.

А дальше уже сложности. Грэм не смог математически доказать, что у семимерного гиперкуба удастся провернуть такую операцию. И у восьмимерного и у девятимерного и так далее. Но данное "и так далее", оказалось, не уходит в бесконечность, а заканчивается неким очень большим числом, которое и назвали "числом Грэма".

То есть существует какая–то минимальная размерность гиперкуба, при котором условие нарушается, и уже невозможно избежать комбинации раскраски отрезков, что четыре точки одного цвета будут лежать в одной плоскости. И эта минимальная размерность точно больше шести и точно меньше числа Грэма, в этом и заключается математическое доказательство ученого.

А теперь определение того, что я выше расписал на несколько абзацев, сухим и скучным (зато емким) языком математики. Понимать не надо, но не привести его я не могу.

Рассмотрим n–мерный гиперкуб и соединим все пары вершин для получения полного графа с 2n вершинами. Раскрасим каждое ребро этого графа либо в красный, либо в синий цвет. При каком наименьшем значении n каждая такая раскраска обязательно содержит раскрашенный в один цвет полный подграф с четырьмя вершинами, все из которых лежат в одной плоскости?

В 1971м году Грэм доказал, что указанная проблема имеет решение, и что это решение (количество размерности) лежит между числом 6 и неким большим числом, которое позже (не самим автором) было названо в его честь. В 2008м году доказательство улучшили, нижнюю границу подняли, теперь искомое количество размерностей лежит уже между числом 13 и числом Грэма. Математики не спят, работа идет, прицел сужается.

С 70х годов прошло немало лет, были найдены математические задачи в которых проявляются числа и побольше грэмова, но это первое число–монстр так поразило современников, понимавших о каких масштабах идет речь, что в 1980м году его включили в книгу рекордов Гиннесса, как "самое большое число, когда–либо участвовавшее в строгом математическом доказательстве" на тот момент.

Давайте попытаемся разобраться, насколько оно велико. Самое большое число, могущее иметь какой–то физический смысл 10185, а если всю Обозримую Вселенную заполнить кажущимся бесконечным набором мизерных циферок, получим что–то соизмеримое с гуголплексом.

http://ic.pics.livejournal.com/sly2m/9519071/398138/398138_1000.png

Представляете себе эту громаду? Вперед, назад, вверх, вниз, насколько хватает глаз и насколько хватает телескопа Хаббл, и даже насколько не хватает, до самых далеких галактик и заглядывая за них — цифры, цифры, цифры размером много меньше протона. Существовать такая Вселенная, конечно, долго не сможет, тут же в черную дыру схлопнется. Припоминаете, сколько информации можно теоретически уместить во Вселенную? Я ведь рассказывал.

Число действительно огромно, рвет мозг. Оно не совсем точно равно гуголплексу, и у него нет названия, потому буду называть его "дохулион". Только что придумал, почему бы и нет. Количество планковских ячеек в Обозримой Вселенной, и в каждой ячейке записана цифра. Число содержит 10185 цифр, его можно изобразить как 1010185.

дохулион = 1010185

Раскроем двери восприятия чуть пошире. Помните инфляционную теорию? Что наша Вселенная лишь одна из многих пузырьков Мультивселенной. А если представить дохулион таких пузырьков? Возьмем число, длиною со все сущее и представим себе Мультивселенную с подобным количеством вселенных, каждая из которых под завязку исписана цифрами — получим дохулион дохулионов. Представляете себе такое? Как плывешь в небытии скалярного поля, а кругом вселенные–вселенные и в них цифры–цифры–цифры... Надеюсь, подобный кошмар (хотя, почему кошмар?) не будет мучить (и почему мучить?) излишне впечатлительного читателя по ночам.

Для удобства назовем подобную операцию "флип". Такое несерьезное междометие, как будто взяли Вселенную и вывернули наизнанку, то она была внутри в цифрах, а теперь наоборот у нас снаружи столько вселенных, сколько было цифр, и каждая полным–полна коробочка, сама вся в цифрах. Как гранат чистишь, корочку так отгибаешь, изнутри выворачиваются зернышки, а в зернышках снова гранаты. Тоже на ходу придумалось, почему бы и нет, с дохулионом ведь прокатило.

К чему я клоню? Стоит ли тормозить? Давайте, хоба, и еще один флип! И вот у нас столько вселенных, сколько было цифр во вселенных, количество которых было равно дохулиону цифр, заполнявших нашу Вселенную. И сразу, не останавливаясь, еще раз флип. И четвертый, и пятый. Десятый, тысячный. Успеваете за мыслью, все еще представляете себе картину?

Не будем мелочиться, распускаем крылья воображения, разгоняемся по полной и флипаем флип флипов. Столько раз выворачиваем каждую вселенную наизнанку, сколько дохулионов вселенных было в предыдущем флипе, который флипал из позапрошлого, который... эээ... ну, вы следите? Где–то так. Пусть теперь наше число станет, предположим, "дохулиард".

дохулиард = флип флипов

Не останавливаемся и продолжаем флипать дохулионы дохулиардов до тех пор пока есть силы. Пока в глазах не темнеет, пока не захочется кричать. Тут каждый сам себе отважный Буратина, стоп–слово будет "брынза".

Так вот. Это все о чем? Огромные и бесконечные дохулионы флипов и дохулиарды вселенных полных цифр не идут ни в какое сравнение с числом Грэма. Даже не скребут по поверхности. Если число Грэма представить в виде палки, растянутой по традиции во всю Обозримую Вселенную, то, что мы тут с вами нафлипали окажется засечкой толщины... ну... как бы это так, помягче выразить... недостойной упоминания. Вот, смягчал, как мог.

Теперь давайте немного отвлечемся, передохнем. Мы читали, мы считали, наши глазоньки устали. Забудем про число Грэма, до него еще ползти и ползти, расфокусируем взгляд, расслабимся, помедитируем на гораздо меньшее, прямо–таки миниатюрнейшее число, которое назовем g1, и запишем всего шестью знаками:

g1 = 3↑↑↑↑3

Число g1 равно "три, четыре стрелочки, три". Что это значит? Так выглядит способ записи, называемый стрелочная нотация Кнута.

Для подробностей и деталей можно почитать статью в Википедии, но там формулы, я коротенько перескажу ее простыми словами.

Одна стрелочка означает обыкновенное возведение в степень.

2↑2 = 22 = 4

3↑3 = 33 = 27

4↑4 = 44 = 256

10↑10 = 1010 = 10 000 000 000

Две стрелочки означают, что понятно, возведение в степень степени.

2↑↑3 = 2↑2↑2 = 222 = 24 = 16

3↑↑3 = 3↑3↑3 = 333 = 327 = 7 625 597 484 987 (больше 7 триллионов)

3↑↑4 = 3↑3↑3↑3 = 3333 = 37 625 597 484 987 = число, в котором около 3 триллионов цифр

3↑↑5 = 3↑3↑3↑3↑3 = 33333 = 337 625 597 484 987 = 3 в степени числа, в котором 3 триллиона цифр — гуголплекс уже сосет

Короче говоря, "число стрелочка стрелочка другое число" показывает, какая высота степеней (математики говорят "башня") выстраивается из первого числа. Например 5↑↑8 означает башню из восьми пятерок и настолько велико, что не может быть рассчитано ни на каком суперкомпьютере, даже на всех компьютерах планеты одновременно.

5*5*5*5*5*5*5*5

Переходим к трем стрелочкам. Если двойная стрелочка показывала высоту башни степеней, то тройная, казалось бы, укажет "высоту башни высоты башни"? Какой–там! В случае тройки мы имеем высоту башни высоты башни высоты башни (в математике такого понятия нет, я решил назвать его "безбашней"). Как–то так:

http://ic.pics.livejournal.com/sly2m/9519071/398518/398518_original.png

То есть 3↑↑↑3 образует безбашню из троек, высотой в 7 триллионов штук. Что такое 7 триллионов троек, поставленные друг на друга и именуемые "безбашней"? Если вы внимательно читали этот текст и не уснули в самом начале, вероятно помните, что от Земли до Сатурна 100 триллионов сантиметров. Тройка, показанная на экране двенадцатым шрифтом, вот эта — 3 — высотой миллиметров пять. Значит безбашня из троек протянется от вашего экрана... ну, не до Сатурна, конечно. Даже до Солнца не дотянется, всего четверть астрономической единицы, примерно как от Земли до Марса в хорошую погоду. Обращаю внимание (не спать!), что безбашня это не число длиной от Земли до Марса, это башня степеней такой высоты. Мы помним, что пять троек в этой башне покрывают гуголплекс, вычисление первого дециметра троек сжигает все предохранители компьютеров планеты, а остальные миллионы километров степеней уже как бы и ни к чему, они просто в открытую насмехаются над читателем, считать их бесполезно и невозможно.

http://ic.pics.livejournal.com/sly2m/9519071/398844/398844_original.jpg

Теперь понятно, что 3↑↑↑4 = 3↑↑3↑↑3↑↑3 = 3↑↑3↑↑7 625 597 484 987 = 3↑↑безбашня, (не 3 в степени безбашни, а "три стрелочка стрелочка безбашня"(!)), она же безбашня безбашни не влезет ни по длине ни по высоте в Обозримую Вселенную, и даже не поместится в предполагаемую Мультивселенную.

На 3↑↑↑5 = 3↑↑3↑↑3↑↑3↑↑3 заканчиваются слова, а на 3↑↑↑6 = 3↑↑3↑↑3↑↑3↑↑3↑↑3 кончаются междометия, но можете потренироваться, коль есть интерес.

Переходим к четырем стрелочкам. Как вы уже догадались, тут безбашня на безбашне сидит, безбашней погоняет, и хоть с башней, что без башни — все равно. Просто молча приведу картинку, раскрывающую схему вычисления четырех стрелочек, когда каждое следующее число башни степеней определяет высоту башни степеней, определяющую высоту башни степеней, определяющую высоту башни степеней... и так до самозабвения.

http://ic.pics.livejournal.com/sly2m/9519071/399033/399033_original.png

Рассчитывать его бесполезно, да и не получится. Количество степеней здесь не поддается осмысленному учету. Это число невозможно представить, его невозможно описать. Никакие аналогии на пальцах™ неприменимы, число просто не с чем сравнивать. Можно говорить, что оно огромно, что грандиозно, что монументально и заглядывает за горизонт событий. То есть придать ему какие–то словесные эпитеты. Но визуализация, даже вольная и образная — невозможна. Если с тремя стрелочками еще хоть что–то удавалось сказать, нарисовать безбашню от Земли до Марса, как–то с чем–то сопоставить, то тут аналогий быть просто не может. Попробуйте вообразить себе тонкую башню из троек от Земли до Марса, рядом еще одну почти такую же и еще одну, и еще... Бескрайнее поле башень уходит вдаль, в бесконечность, башни повсюду, башни везде. И, что самое обидное, эти башни даже отношения к числу не имеют, они лишь определяют высоту других башен, которые нужно построить, чтобы получить высоту башень, чтобы получить высоту башень... чтобы через невообразимое количество времени и итераций получить само число.

Вот, что такое g1, вот что такое 3↑↑↑↑3.

Передохнули? Теперь от g1 с новыми силами возвращаемся к штурму числа Грэма. Заметили, как нарастает эскалация от стрелочки к стрелочке?

3↑3 = 27

3↑↑3 = 7 625 597 484 987

3↑↑↑3 = башня, высотой от Земли до Марса.

3↑↑↑↑3 = число, которое невозможно ни представить ни описать.

А вообразите какой цифровой кошмар творится, когда стрелок окажется пять? Когда их шесть? Можете представить число, когда стрелок будет сто? Если можете, позвольте предложить вашему вниманию число g2, в котором количество этих стрелок оказывается равно g1. Помните, что такое g1, да?

http://ic.pics.livejournal.com/sly2m/9519071/399179/399179_300.png

Все, что было написано до сих пор, все эти расчеты, степени и башни не помещающиеся в мультивселенные мультивселенных нужны были только для одного. Чтобы показать КОЛИЧЕСТВО СТРЕЛОК в числе g2. Тут уже не нужно ничего считать, можно просто рассмеяться и махнуть рукой.

Не буду скрывать, есть еще g3, в котором содержится g2 стрелок. Кстати, все еще понятно, что g3, это не g2 "в степени" g2, а количество безбашен, определяющих высоту безбашен, определяющих высоту... и так по всей цепочке вниз до тепловой смерти Вселенной? Здесь можно начинать плакать.

Почему плакать? Потому что совершенно верно. Есть еще число g4, в котором содержится g3 стрелочек между тройками. Есть так же g5, есть g6 и g7 и g17 и g43...

Короче их 64 штуки этих g. Каждое предыдущее численно равно количеству стрелок в следующем. Последнее g64 и есть число Грэма, с которого все так вроде бы невинно начиналось. Это число размерностей гиперкуба, которого точно будет достаточно, чтобы правильно раскрасить отрезки красным и синим цветами. Может и меньше, это, так сказать, верхняя граница. Его записывают следующим образом:

http://ic.pics.livejournal.com/sly2m/9519071/399933/399933_original.png, а расписывают так:

http://ic.pics.livejournal.com/sly2m/9519071/399669/399669_original.png

Все, теперь можно расслабиться по–честному. Нет больше необходимости ничего представлять и рассчитывать. Если вы дочитали до этого места, уже как бы все должно встать на свои места. Или не встать. Или не на свои.

Да, опытный читатель с прокачанными предохранителями, не нужно упреков, вы абсолютно правы. Число Грэма — надуманная и высосанная из пальца фигня. Все эти безразмерные гиперкубы и абстрактные плоскости, дьявол их раздери, кому они нужны? Где килограммы, где электроны, где то, что можно измерить? Что за пустые разглагольствования ни о чем? Соглашусь. Можно сказать, что сегодняшний пост на пальцах™ максимально, на сколько это было возможно, далек от реальной науки, почти весь целиком парит в каких–то заумных математических фантазиях, в то время как ученым не хватает денег на приборы, не решена мировая энергетическая проблема, а у кого–то все еще туалет во дворе. А у кого и в поле.

Но знаете, есть такая теория, тоже весьма эфемерная и философская, может слышали — все, что человек мог себе представить или вообразить обязательно когда–нибудь воплотится. Потому что развитие цивилизации определяется по тому, насколько она смогла воплотить в реальность фантазии прошлого.

Истории человеческой цивилизации 10 000 лет. Задумайтесь, человечеству всего 10 000 лет! Десять тысяч оборотов Земли вокруг Солнца. Хотя отдельному человеку в виде прямоходящей обезьяны без хвоста дают 4 миллиона. Все эти 4 миллиона лет спустившаяся с деревьев обезьяна училась держать палку и добывать огонь. Только десять тысяч лет назад появилось какое–то первое подобие общества, произошел качественный переход, человек вышел из пещер и начал строить дома и деревни. Герой того времени (уже довольно цивилизованный по современным меркам) не мог посчитать дальше сотни тысяч (а просто нечего было считать больше такого количества), не имел понятия о среднем арифметическом и не знал суммы квадратов катетов. Этого великого открытия нужно было дожидаться много веков, не одну тысячу лет. 4000 лет назад человек был уверен, что молнии в небе происходят лично от Зевса, 2000 лет назад считал, что можно развести руками воды моря, стоит только заручиться поддержкой влиятельной особы, тогда как родственные узы дадут возможность ходить по воде. 500 лет назад человек доказал, что Земля круглая, 400 — что вертится вокруг Солнца, 200 лет назад узнал о свойствах пара приводить в движение мертвый металл, а около 100 лет назад был уверен, что полеты на аппаратах тяжелее воздуха невозможны. 70 лет назад человечество догадалось, как расщепить атом, 60 лет назад вышло в космос, а еще через 15 открыло для себя число Грэма. 20 лет назад мы увидели самую далекую, одну из самых первых сформировавшихся после Большого Взрыва галактик и тогда же примерно запустили общемировую информационную сеть, выведя цивилизацию на следующий качественный уровень развития. Десять лет назад к этой сети подключилась половина населения планеты.

Никто не знает, что ждет нас в будущем. У человеческой цивилизации есть тысячи способов закончиться: ядерные войны, экологические катастрофы, смертоносные пандемии, астероид какой может прилететь, динозавры не дадут соврать. Развитие человечества может остановиться само собой, вдруг есть такой закон, что по достижению определенного уровня развитие просто прекращается и все. Или прилетят представители межгалактического союза и остановят это развитие силой.

Но есть все–таки, и не маленький, шанс, что развитие человечества продолжится без остановки. Пусть даже не такое головокружительно быстрое, как в последние 100 лет, главное, что движение вперед, главное, что поступательное.

У природы есть один незыблемый закон, известный нам с самой давней древности. Как бы ни было, что бы ни случилось, что бы мы себе ни думали, но время никуда не денется, оно пройдет. Хотим мы этого или не хотим, с нами или без — пройдут и тысяча и 10 тысяч лет.

200 лет назад ковер–самолет (обычный самолет), волшебное зеркало (скайп–видео) или тридевятое царство (поверхность планеты Марс) казались несбыточной сказкой, 2000 лет назад полагались только богам, 20 000 лет такого вообще представить не могли, способностей воображения не хватало. Вы можете сказать, что будет доступно человеку через 200 лет? Через 2000, через 20000 лет?

Выживет ли человечество, будет ли это вообще человечество с приставкой "чело–", а может к тому времени и этап Искусственного Интеллекта закончится, порождая какие–то эфирные энергетические субстанции особой категории осознанности? Может да, может нет.

А если пройдет миллион лет? А ведь он пройдет, куда денется. Число Грэма, и вообще все, о чем человек способен задуматься, представить, вытащить из небытия и сделать пусть не осязаемой, но хотя бы имеющей какой–то смысл сущностью — обязательно рано или поздно воплотится. Просто потому, что сегодня у нас хватило сил развиться до способности осознания подобного.

Сегодня, завтра, когда будет возможность — запрокиньте голову в ночное небо. Помните этот момент ощущения собственной ничтожности? Чувствуете, какой человек крошечный? Пылинка, атом по сравнению с безбрежной Вселенной, которая звезд полна, коим числа нет, ну, и бездна, соотвественно, тоже не маленькая.

В следующий раз попробуйте ощутить, какая Вселенная песчинка по сравнению с тем, что происходит в голове. Какая пучина открывается, какие неизмеримые концепции рождаются, какие миры строятся, как Вселенная флипается наизнанку одним только движением мысли, как и насколько живая, разумная материя отличается от мертвой и неразумной.

Я верю, что через какое–то время человек дотянется до числа Грэма, дотронется до него рукой, или что у него к тому времени будет вместо руки. Это не обоснованная, научно доказанная мысль, это действительно всего лишь надежда, то, что меня вдохновляет. Не Вера с большой буквы, не религиозный экстаз, не учение и не духовная практика. Это то, чего я жду от человечества. В чем стремлюсь, в меру сил, помочь. Хоть и продолжаю из осторожности причислять себя к агностикам.

(с) sly2m

0

3

https://ds03.infourok.ru/uploads/ex/0f3d/00053f5c-1ca7fb30/640/img27.jpg

0

4

Правда ли, что число возможных шахматных партий больше, чем число атомов во Вселенной?

Это утверждение уже долгое время кочует по различным страничкам типа «Интересные факты». Давайте проверим верно оно или нет. А помогать проверять нам будет известный математик, отец теории информации —Клод Шеннон.

https://avatars.mds.yandex.net/get-zen_doc/50129/pub_5d4486a76f5f6f00aeae5f62_5d44b391e4f39f00af427fcc/scale_1200
Клод Шеннон

В своей статье 1949-го года он привёл нижнюю оценку количества не повторяющихся шахматных партий, для того, чтобы продемонстрировать практическую невозможность создания компьютерной программы, которая сможет перебрать все возможные ходы.

Определить точное количество возможных шахматных партий невозможно, однако не сложно оценить нижнюю границу, ниже которой число возможных партий точно быть не может. Для этого нужно просто возвести коэффициент ветвления шахматной партии в степень равную средней продолжительности партии.
https://avatars.mds.yandex.net/get-zen_doc/1534997/pub_5d4486a76f5f6f00aeae5f62_5d4493f71e8e3f00adc9b938/scale_1200
Коэффициент ветвления в шахматной партии — это среднее количество допустимых правилами ходов в произвольной позиции. Среднюю же продолжительность шахматной партии несложно узнать просто проанализировав статистику партий профессиональных игроков.

https://avatars.mds.yandex.net/get-zen_doc/1861837/pub_5d4486a76f5f6f00aeae5f62_5d449ceaddfef600ac19ce06/scale_1200
Запись партии между Борисом Спасским и Робертом Фишером на XIX шахматной олимпиаде. Продолжительность партии — 38 с половиной ходов.
Коэффициент ветвления примерно равен 30. В среднем шахматная партия продолжается около 40 полных ходов, т.е. состоящих из одного хода белых и одного хода черных т.е. средняя продолжительность партии — для нашей формулы составит 80.

https://avatars.mds.yandex.net/get-zen_doc/62191/pub_5d4486a76f5f6f00aeae5f62_5d44ab1eb5e99200ae094fd0/orig
Это число 10 в 120-й степени получило название «Число Шеннона». Это нижняя оценка числа возможных не повторяющихся шахматных партий. Реальное число всех возможных партий будет на много порядков больше, так как эта оценка основана на средней продолжительности партии в 40 ходов. Это так, потому что шахматисты сдаются, если их позиция безнадёжна. Если бы каждая партия доигрывалась до мата, пата или троекратного повторения позиции, то средняя продолжительность была бы гораздо больше.

С числом возможных шахматных партий всё понятно. Как же нам оценить число атомов в наблюдаемой вселенной? Опять же — вне наших возможностей рассчитать или иным способом узнать точное количество атомов, но для наших целей вполне хватит и грубой оценки.

Для того, чтобы такую оценку сделать нам нужно знать примерно сколько вообще барионной материи во вселенной. Чтобы это узнать нам нужно знать объем нашей наблюдаемой вселенной и среднюю плотность вещества в ней.

Объем наблюдаемой вселенной известен:
https://avatars.mds.yandex.net/get-zen_doc/1856956/pub_5d4486a76f5f6f00aeae5f62_5d449acf9c944600aede256f/orig

Будем исходить из предположения, что наша вселенная плоская. Критическая плотность вселенной для плоской вселенной выражается как:
https://avatars.mds.yandex.net/get-zen_doc/118779/pub_5d4486a76f5f6f00aeae5f62_5d44909db5e99200ae094f58/orig

Где G – гравитационная постоянная, а H, это H₀ — текущее значение постоянной Хаббла. По этой формуле несложно подсчитать, что критическая плотность вселенной равна 0.85×10⁻²⁶ кг/м³.

Кроме того, результаты последних исследований указывают на то, что плотность вселенной равна критической, хотя некоторые модели и допускают другие её значения.

Зная объем и плотность подсчитать массу — задачка для школьника: получаем массу барионной материи в наблюдаемой вселенной равную 1.48 ×10⁵³ кг.

https://avatars.mds.yandex.net/get-zen_doc/175604/pub_5d4486a76f5f6f00aeae5f62_5d449c4ec31e4900ad3c98ed/scale_1200
Для простоты будем считать, что всё вещество вселенной — это водород. Масса атома водорода 1.67×10⁻²⁷ кг. Разделив массу вселенной на массу атома водорода получим примерное число атомов во вселенной: 10⁸⁰ атомов. Если бы мы учли тот, факт, что значительная часть вещества вселенной представлена также атомами гелия, а кроме того содержит небольшую долю более тяжелых элементов, то оценка количества атомов была бы ниже.

Таким образом действительно число возможных шахматных партий по самой скромной оценке примерно на 40 порядков больше, числа атомов во вселенной. Шах и мат, Вселенная!

0


Вы здесь » Форум В шутку и всерьёз » Гранит науки » Большие числа